

Initial impact of AIRS data on analyses and forecasts at NASA/GSFC

Robert Atlas and Joanna Joiner

- At GSFC we are evaluating the impact of AIRS data in several different forms,
 - NESDIS statistical retrievals
 - AIRS Team physical retrievals
 - 1D VAR interactive retrievals
 - AIRS radiances
- The impact of clear retrievals or radiances vs the addition of partially cloudy data will be evaluated.
- The impact of data over water vs data over both water and land will be evaluated.
- The impact of AIRS will be evaluated using several different DAS: FVSSI, FVDAS, EDAS

Initial impact of AIRS data on analyses and forecasts at NASA/GSFC: Interactive retrievals and radiances

Joanna Joiner, Paul Poli, (Don Frank), Tom King, Genia Brin, Bob Atlas

- Introduction
- Clear channel identification using a spatial variability approach
 - Simulation results
 - Focus day results (O-B radiances)
 - Comparison with MODIS
- Assimilation results
- Summary

Spatial variability approach

- Assumption: clouds at a given level will have a heterogeneous effect on adjacent-pixel radiances
- Does not rely heavily on information from background (only used when no variability or to define weighting functions)
- Does not assume anything about cloud radiative (spectral) properties or vertical structure
- O-B can be used as independent check
- O-B method could be applied afterwards
- Computationally inexpensive

Spatial approach, cont.

- Maximize radiance contrast within a golfball by partial eigen-decomposition (most of variance captured in first 3 modes)
 - Problem: at scan edge SZA variability maximized
 - Solution: Use single golfball column
- Check if there is significant variability (~50% of golfballs). If not, apply series of clear tests
- Start from ~100 hPa and work downwards, applying test with appropriate channels checking radiance differences in adjacent pixels
 - Mean test: Is mean significantly different from zero? (Improved by taking into account error of mean!)
 - Standard deviation test: Are standard deviations significantly different from those expected?

Golfball column reduction

 Use column that has pixel with warmest 11μm brightness temperature
 (ensures constant satellite zenith angle)

Monte Carlo Simulations

- Generate true radiances based on model satellite track; 39 latitudes between 18 and 63°N
- For each of the 39 profiles, 100 simulations with 9 FOVs
 - black clouds, two layers, uniformly distributed in pressure and cloud fraction
 - Instrument noise (Gaussian)
 - Background errors (consistent with covariance matrix)

Retrieved vs True (Simulations)

Estimating radiance errors

- Use clear, adjacent FOVs to estimate detector noise + atmospheric/surface variability
- Detector noise estimates from AIRS science team
- © Compute O-B with O=O1 (warmest pixel), O=O3 (average of 3 column pixels) for clear pixels without significant atmospheric/surface variability to get estimates of detector noise (σ_d) and projected forecast error (σ_f)

$$\sigma_f^{2} + \sigma_d^{2} = \sigma_{(O1-B)}^{2}$$

 $\sigma_f^{2} + \sigma_d^{2}/3 = \sigma_{(O3-B)}^{2}$

Estimating noise/clear variability

+: Estimated

clear variability

Diamond: AIRS team estimated noise

Triangle:
Estimated
forecast
errors

Green: Our noise estimate 10/22/2003

Focus day - real AIRS data

AIRS effective cloud pressure (More conservative)

Aqua MODIS L3 minimum cloud-top pressure

Frequency channels picked

- Preliminary comparison with MODIS, O-B indicates the algorithm appears to be working
- There are very few cases where O-B indicates possible residual cloud contamination
- Correlated radiance errors may cause cloud level to be retrieved too high
- Land-surface variability potentially causes algorithm not to detect clear areas over land
- Mostly, the algorithm errs on the conservative side
- Parameters can be tuned depending on application (can be made more or less conservative)
- Paper on algorithm submitted to QJRMS, under revision

- Finite-volume data assimilation system (fvDAS)
 - 1DVAR with cloud-clearing, assimilate as heights, mixing ratio
 - Thinned to $\sim 4 \times 5^{\circ}$ resolution
 - Model 1 x 1.25° resolution to 0.01 hPa
 - ≈ ~180 AIRS channels
- Control: no AIRS (NOAA 15, 16, 17)
- Experiment: where AIRS available, replace NOAA 16 HIRS with AIRS (do not use Aqua AMSU)
 - Focus day (July 20, 2002) shown previously
 - January 2003 (focus on Columbia reentry shown previously)
 This presentation will focus on monthly statistics.

6 hour humidity forecast vs radiosonde

airs_fv047.hdf noairs_fv047.hdf

mixrraob STDV at 500 hPa

6 hour height forecast vs radiosondes

6 hour wind forecast vs radiosondes airs fv047,hdf noairs fv047,hdf noairs fv047,hdf

ΝE

Tropics

SW

SE

0.4

0.2 -

Global

NW

5 day 500 hPa height RMS errors

- Clear channel identification appears to be working;
 Could be combined with O-B based methods
- Improvement in 6 hours forecast humidity, heights, and winds (reduction of biases as compared with radiosondes) in SH, tropics -> Improved analysis!
- Preliminary AIRS assimilation in fvDAS system shows neutral impact on 500 hPa heights up to 5 days – however, the experiment was not optimal
 - AIRS data thinned to 4 x 5 degree resolution
 - Temperature information assimilated as heights
 - Background and observation errors not optimized

- Fine tuning of algorithms ongoing
- Assimilations with hybrid GMAO/NCEP (fvSSI) system ongoing to assimilate different sets of pre-processed radiances
 - Warmest golfball pixel w/NCEP cloud detection
 - w/GMAO cloud detection
 - Column averaged pixels w/ both cloud detections
 - GMAO Cloud-cleared radiances w,w/o NCEP cloud detection
- Have completed static analyses with GMAO processed radiances
 - Speed of OPTRAN on GMAO computers an issue
 - Have integrated SARTA, MIT RT codes within SSI analysis for increased speed